#### Production of Eco-Friendly Polyhydroxyalkanoates Using Waste Starch

Authors: Karlo Grgurević, Dajana Kučić Grgić, Martina Miloloža, Vesna Ocelić Bulatović











Financira Europska unija NextGenerationEU This research was carried out as part of the project "Production and development of compostable packaging from waste biomass for the packaging of industrially processed food products" (NPOO.C3.2.R3-II.04.0059) financed by the National Recovery and Resilience Plan (financed by the European Union, NextGenerationEU).



# Table of content

#### 1. Introduction

1.1. Polyhydroxyalkanoates (PHA)1.2. PHA production from agro-industrial waste in microorganism cell1.3. PHA biosynthesis

- 2. Materials and methods
- 3. Results and discussion
  - 4.1. Waste starch characterisation
  - 4.2. Microorganism isolation and identification
  - 4.3. Waste starch pretreatment optimization
  - 4.4. PHA extraction and purification
  - 4.5. PHA characterisation
- 4. Conclusion





# 1. Introduction



- synthetic polymers problems
- biodegradability
- polyhydroxyalkanoates (PHA)
- @ agro-industrial waste- pretreatment
- # fermentation



# 1.1. Polihydroxyalkanoates, PHA



Diodegradable polyesters

microorganisms in stress conditions

- Martinus Beijerinck (1888), Maurice Lemoigne (1923)
- 150 different PHA kinds
- P3HB & P4HB



SEM photography of PHA granule in microorganisms' cells

# 1.2. PHA production from agro-industrial waste in microorganism cell



Agro-industrial waste classification

lignocellulose – cellulose, hemicellulose, lignin
 various nutrients → supstrate adequate for fermentation process

pH, temperature, moisture, reducing sugars content, C:N
 pretreatment is necessary



Lignocelulose structure



Waste pretreatment



"Solid – state fermentation" process

- pretreatment lignocelulose degradation, specific area increase, particle size decrease...
- @ SSF batch reactor



Cell separation and disruption, PHA extraction





#### 2. Materials and methods



Waste starch characterisation

Waste starch

Starch pretreatment process optimisation and PHA production

Ultrasound (US) pretreatment od starch (US power, pretreatment time and NaOH concentration)

"Solid-state" fermentation

Reducing sugar content determination



Microorganism isolation and identification



Microorga isolation at

**PHA** extraction



Moisture, dry matter and volatile matter

content determination

| Exp. | Time of US / min | US power / W mL <sup>-1</sup> | <i>c</i> (NaOH) / M |
|------|------------------|-------------------------------|---------------------|
| 1    | 30               | 1                             | 0,01                |
| 2    | 30               | 1                             | 0,05                |
| 3    | 30               | 1                             | 0,1                 |
| 4    | 30               | 2                             | 0,01                |
| 5    | 30               | 2                             | 0,05                |
| 6    | 30               | 2                             | 0,1                 |
| 7    | 30               | 3                             | 0,01                |
| 8    | 30               | 3                             | 0,05                |
| 9    | 30               | 3                             | 0,1                 |
| 10   | 60               | 1                             | 0,01                |
| 11   | 60               | 1                             | 0,05                |
| 12   | 60               | 1                             | 0,1                 |
| 13   | 60               | 2                             | 0,01                |
| 14   | 60               | 2                             | 0,05                |
| 15   | 60               | 2                             | 0,1                 |
| 16   | 60               | 3                             | 0,01                |
| 17   | 60               | 3                             | 0,05                |
| 18   | 60               | 3                             | 0,1                 |
| 19   | 90               | 1                             | 0,01                |
| 20   | 90               | 1                             | 0,05                |
| 21   | 90               | 1                             | 0,1                 |
| 22   | 90               | 2                             | 0,01                |
| 23   | 90               | 2                             | 0,05                |
| 24   | 90               | 2                             | 0,1                 |
| 25   | 90               | 3                             | 0,01                |
| 26   | 90               | 3                             | 0,05                |
| 27   | 90               | 3                             | 0,1                 |

Waste starch characterisation

Waste starch

Starch pretreatment process optimisation and PHA production

Ultrasound (US) pretreatment od starch (US power, pretreatment time and NaOH concentration)

"Solid-state" fermentation

Reducing sugar content determination



Microorganism isolation and identification



Microorga isolation at

**PHA** extraction



Moisture, dry matter and volatile matter

content determination



### 4. Results and discussion



#### 3.1. Waste starch characterisation

**Table 3.1.** Initial values of moisture and dry and volatile matter mass fraction in waste starch; pH and conductivity.

| Sample | w (H2O) / % | w (DM) / % | w (VM) / % | pH-value | κ / μS cm <sup>-1</sup> |
|--------|-------------|------------|------------|----------|-------------------------|
| Starch | 44,77       | 55,23      | 99,36      | 4,453    | 433                     |

Table 3.2. CFU values taken from different nutrient supstrates.

| Microorganism                    | CFU / cells g <sub>DM</sub> <sup>-1</sup> |
|----------------------------------|-------------------------------------------|
| Bacteria (HA)                    | $1,45 \cdot 10^{8}$                       |
| Fungi (molds<br>and yeasts) (SA) | $7,38 \cdot 10^{6}$                       |
| Bacteria and<br>fungi (PHA)      | $8,95 \cdot 10^{7}$                       |



*c /* mmol L<sup>-1</sup> DNS calibration curve

 $c = 0,2253 \text{ mmol } \text{L}^{-1}$ 

# 3.2. Microorganism isolation and identification



# 3.3. Waste starch pretreatment optimisation

#### Pretreated starch characterisation

**Table 3.3.** Pretreated starch characterisation (before SSF process).

| Exp. | w(H <sub>2</sub> O) / % | w(DM) /<br>% | w(VM) /<br>% | pН     | κ/<br>mS cm <sup>-1</sup> | γ(O <sub>2</sub> ) /<br>mg L <sup>-1</sup> | <i>T</i> / °C |
|------|-------------------------|--------------|--------------|--------|---------------------------|--------------------------------------------|---------------|
| 1    | 14,60                   | 85,40        | 99,65        | 9,590  | 0,206                     | 8,07                                       | 22,6          |
| 2    | 14,42                   | 85,58        | 98,74        | 10,256 | 1,693                     | 8,11                                       | 23,3          |
| 3    | 19,30                   | 80,70        | 97,79        | 10,385 | 2,480                     | 8,08                                       | 23,5          |
| 4    | 14,53                   | 85,47        | 99,68        | 9,807  | 0,379                     | 8,02                                       | 23,8          |
| 5    | 18,00                   | 82,00        | 98,85        | 10,214 | 1,541                     | 7,97                                       | 23,9          |
| 6    | 35,99                   | 64,01        | 98,23        | 10,373 | 2,200                     | 7,96                                       | 23,8          |
| 7    | 19,12                   | 80,88        | 99,50        | 9,845  | 0,404                     | 7,90                                       | 23,8          |
| 8    | 43,13                   | 56,87        | 99,05        | 10,236 | 1,557                     | 7,95                                       | 24,1          |
| 9    | 58,47                   | 41,53        | 98,78        | 10,034 | 1,726                     | 7,58                                       | 24,2          |
| 10   | 16,72                   | 83,28        | 99,56        | 9,733  | 0,282                     | 8,08                                       | 23,1          |
| 11   | 18,08                   | 81,92        | 98,66        | 10,262 | 1,742                     | 8,10                                       | 23,1          |
| 12   | 26,28                   | 73,72        | 97,92        | 10,270 | 1,553                     | 7,99                                       | 23,6          |
| 13   | 17,72                   | 82,28        | 99,57        | 9,534  | 0,315                     | 7,83                                       | 24,0          |
| 14   | 17,65                   | 82,35        | 98,71        | 10,107 | 1,438                     | 7,86                                       | 24,2          |
| 15   | 64,56                   | 35,44        | 97,66        | 10,152 | 1,995                     | 7,48                                       | 24,5          |
| 16   | 16,68                   | 83,32        | 99,68        | 9,508  | 0,215                     | 7,63                                       | 24,7          |
| 17   | 18,27                   | 81,73        | 98,78        | 10,147 | 1,605                     | 7,87                                       | 24,2          |
| 18   | 72,45                   | 27,55        | 98,95        | 10,017 | 1,520                     | 7,56                                       | 24,4          |
| 19   | 17,48                   | 82,52        | 99,61        | 9,425  | 0,357                     | 7,97                                       | 23,8          |
| 20   | 17,69                   | 82,31        | 98,66        | 10,038 | 1,665                     | 7,92                                       | 24,0          |
| 21   | 10,24                   | 89,76        | 97,52        | 10,343 | 3,010                     | 7,94                                       | 24,0          |
| 22   | 16,41                   | 83,59        | 99,63        | 9,228  | 0,319                     | 7,91                                       | 24,1          |
| 23   | 17,29                   | 82,71        | 98,78        | 9,908  | 1,600                     | 7,89                                       | 24,0          |
| 24   | 76,12                   | 23,88        | 98,59        | 10,035 | 3,090                     | 7,85                                       | 24,1          |
| 25   | 15,97                   | 84,03        | 99,66        | 10,261 | 0,288                     | 7,79                                       | 24,3          |
| 26   | 16,53                   | 83,47        | 98,75        | 10,033 | 1,691                     | 8,02                                       | 24,0          |
| 27   | 13,01                   | 86,99        | 96,66        | 9,898  | 1,780                     | 7,82                                       | 23,9          |

**Table 3.4.** Initial CFU values of microbial suspension (cells  $mL^{-1}$ ) and waste with added microbial suspension (cells  $g_{DM}^{-1}$ ).

| -    | Suspensio                       | Suspension (initial)            |                     | waste (initial)                              |
|------|---------------------------------|---------------------------------|---------------------|----------------------------------------------|
|      | HA                              | SA                              | HA                  | SA                                           |
| Exp. | CFU / cells<br>mL <sup>-1</sup> | CFU / cells<br>mL <sup>-1</sup> | CFU / cells         | CFU / cells<br>g <sub>DM</sub> <sup>-1</sup> |
| 1    | $2,67 \cdot 10^{9}$             | $1,97 \cdot 10^{8}$             | $8,00 \cdot 10^{7}$ | $1,16 \cdot 10^{7}$                          |
| 2    | $2,78 \cdot 10^{9}$             | $3,57 \cdot 10^{7}$             | $3,40 \cdot 10^{7}$ | $2,10 \cdot 10^{6}$                          |
| 3    | 1,61 · 109                      | $2,29 \cdot 10^{7}$             | $2,00 \cdot 10^{7}$ | $6,10 \cdot 10^{6}$                          |
| 4    | $2,80 \cdot 10^{9}$             | $3,22 \cdot 10^{7}$             | $2,38 \cdot 10^{8}$ | $3,20 \cdot 10^{7}$                          |
| 5    |                                 |                                 | $3,38 \cdot 10^{7}$ | $3,36 \cdot 10^{8}$                          |
| 6    | $4,49 \cdot 10^{9}$             | $1,70 \cdot 10^{8}$             | $2,10 \cdot 10^{7}$ | $3,68 \cdot 10^{8}$                          |
| 7    |                                 |                                 | $6,90 \cdot 10^{8}$ | $3,92 \cdot 10^{8}$                          |
| 8    |                                 |                                 | $3,10 \cdot 10^{7}$ | $3,40 \cdot 10^{6}$                          |
| 9    | 2.64 . 109                      | 9,04 · 10 <sup>7</sup>          | $1,11 \cdot 10^{8}$ | $4,30 \cdot 10^{6}$                          |
| 10   | 2,04 * 10                       |                                 | $2,80 \cdot 10^{8}$ | $4,52 \cdot 10^{7}$                          |
| 11   |                                 |                                 | $4,96 \cdot 10^{8}$ | $8,60 \cdot 10^{6}$                          |
| 12   |                                 | 6,18 · 10 <sup>8</sup>          | $1,07 \cdot 10^{8}$ | $1,40 \cdot 10^{7}$                          |
| 13   | $7.76 \cdot 10^{9}$             |                                 | $6,00 \cdot 10^{8}$ | $1,30 \cdot 10^{8}$                          |
| 14   | 7,70 10                         |                                 | $4,20 \cdot 10^{8}$ | $7,60 \cdot 10^{7}$                          |
| 15   |                                 |                                 | $7,10 \cdot 10^{8}$ | $8,60 \cdot 10^{6}$                          |
| 16   |                                 |                                 | $2,28 \cdot 10^{9}$ | $3,20 \cdot 10^{8}$                          |
| 17   | $4.35 \cdot 10^{9}$             | $3.02 \cdot 10^8$               | $9,20 \cdot 10^{8}$ | $7,70 \cdot 10^{7}$                          |
| 18   | 4,55 10                         | 3,02 * 10*                      | $7,90 \cdot 10^{8}$ | $1,06 \cdot 10^{7}$                          |
| 19   |                                 |                                 | $1,20 \cdot 10^{9}$ | $2,56 \cdot 10^{8}$                          |
| 20   |                                 |                                 | $2,32 \cdot 10^{8}$ | $3,20 \cdot 10^{6}$                          |
| 21   | $1.52 \cdot 10^{9}$             | $6.96 \cdot 10^{8}$             | $3,90 \cdot 10^{7}$ | $3,30 \cdot 10^{6}$                          |
| 22   | 1,52 10                         | 0,70 10                         | $2,88 \cdot 10^{8}$ | $5,30 \cdot 10^{6}$                          |
| 23   |                                 |                                 | $3,60 \cdot 10^{7}$ | $4,40 \cdot 10^{6}$                          |
| 24   |                                 |                                 | $3,70 \cdot 10^{7}$ | $3,90 \cdot 10^{6}$                          |
| 25   | $1.62 \cdot 10^{9}$             | $4.29 \cdot 10^{8}$             | $2,36 \cdot 10^{8}$ | $1,06 \cdot 10^{8}$                          |
| 26   | 1,02 10                         | 1,22 10                         | $7,20 \cdot 10^{7}$ | $2,06 \cdot 10^{7}$                          |
| 27   |                                 |                                 | $1,72 \cdot 10^{8}$ | $8,00 \cdot 10^{6}$                          |

**Table 3.5.** Mean values of absorbance andreducing sugars concentrations in pretreatedstarch before SSF process.

| Exp. | ABS / - | <i>c</i> (reducing sugars) / mmol L <sup>-1</sup> |
|------|---------|---------------------------------------------------|
| 1    | 0,004   | 0,170                                             |
| 2    | 0,004   | 0,168                                             |
| 3    | 0,003   | 0,164                                             |
| 4    | 0,004   | 0,168                                             |
| 5    | 0,004   | 0,168                                             |
| 6    | 0,001   | 0,151                                             |
| 7    | 0,002   | 0,155                                             |
| 8    | 0,002   | 0,159                                             |
| 9    | 0,004   | 0,166                                             |
| 10   | 0,002   | 0,157                                             |
| 11   | 0,002   | 0,157                                             |
| 12   | 0,004   | 0,170                                             |
| 13   | 0,001   | 0,153                                             |
| 14   | 0,005   | 0,173                                             |
| 15   | 0,005   | 0,173                                             |
| 16   | 0,003   | 0,162                                             |
| 17   | 0,003   | 0,164                                             |
| 18   | 0,019   | 0,250                                             |
| 19   | 0,005   | 0,172                                             |
| 20   | 0,004   | 0,170                                             |
| 21   | 0,003   | 0,164                                             |
| 22   | 0,003   | 0,162                                             |
| 23   | 0,005   | 0,175                                             |
| 24   | 0,005   | 0,175                                             |
| 25   | 0,009   | 0,194                                             |
| 26   | 0,007   | 0,183                                             |
| 27   | 0,011   | 0,205                                             |

# 3.3. Waste starch pretreatment optimisation

#### Waste starch pretreatment optimisation for PHA production



Response surfaces for PHA accumulation in correlation with US power and pretreatment time (constant values of NaOH concentrations a) 0,01 mol L<sup>-1</sup>; b) 0,05 mol L<sup>-1</sup>; c) 0,1 mol L<sup>-1</sup>).



Response surfaces for PHA accumulation in correlation with NaOH concentration and pretreatment time (constant values of US power a) 1 W mL<sup>-1</sup>; b) 2 W mL<sup>-1</sup>; c) 3 W mL<sup>-1</sup>).

**Table 3.6.** Optimal conditions for starch pretreatmentresulting with the highest PHA accumulation value.

| Time / min | US power / W mL <sup>-1</sup> | c(NaOH) / mol L <sup>-1</sup> |
|------------|-------------------------------|-------------------------------|
| 30,00      | 1,71                          | 0,01                          |

Table 3.7. Statistical data obtained with ANOVA analysis.

| Standard deviation       | 0,042  |
|--------------------------|--------|
| Median                   | 0,11   |
| C. V. %                  | 37,86  |
| PRESS                    | 0,073  |
| $R^2$                    | 0,9132 |
| Adjusted R <sup>2</sup>  | 0,8812 |
| Estimated R <sup>2</sup> | 0,8131 |
| Adequate precision       | 19,648 |

# 3.3. Waste starch pretreatment optimisation

#### Pretreated starch characterisation after SSF process

**Table 3.8.** Pretreated starch characterisation (before SSF process).

| Exp. | w(H2O)sr. /<br>% | w(DM) <sub>sr.</sub> /<br>% | w(VM)sr. /<br>% | pН     | κ /<br>mS cm <sup>-1</sup> | γ(O <sub>2</sub> ) /<br>mg L <sup>-1</sup> | <i>T</i> / °C |
|------|------------------|-----------------------------|-----------------|--------|----------------------------|--------------------------------------------|---------------|
| 1    | 14,60            | 85,40                       | 99,65           | 10,214 | 0,457                      | 8,30                                       | 21,8          |
| 2    | 14,42            | 85,58                       | 98,74           | 10,625 | 2,910                      | 8,29                                       | 21,8          |
| 3    | 19,30            | 80,70                       | 97,79           | 10,650 | 2,950                      | 7,30                                       | 21,8          |
| 4    | 14,53            | 85,47                       | 99,68           | 9,717  | 0,430                      | 4,58                                       | 21,8          |
| 5    | 18,00            | 82,00                       | 98,85           | 10,553 | 2,350                      | 8,35                                       | 22,4          |
| 6    | 35,99            | 64,01                       | 98,23           | 10,662 | 3,030                      | 8,32                                       | 22,4          |
| 7    | 19,12            | 80,88                       | 99,50           | 10,022 | 0,496                      | 7,70                                       | 22,3          |
| 8    | 43,13            | 56,87                       | 99,05           | 10,390 | 2,320                      | 7,97                                       | 23,0          |
| 9    | 58,47            | 41,53                       | 98,78           | 10,677 | 5,600                      | 7,98                                       | 23,0          |
| 10   | 16,72            | 83,28                       | 99,56           | 9,919  | 0,424                      | 6,50                                       | 23,3          |
| 11   | 18,08            | 81,92                       | 98,66           | 10,109 | 1,963                      | 1,78                                       | 23,3          |
| 12   | 26,28            | 73,72                       | 97,92           | 10,540 | 3,280                      | 5,96                                       | 23,3          |
| 13   | 17,72            | 82,28                       | 99,57           | 8,851  | 0,444                      | 2,22                                       | 23,2          |
| 14   | 17,65            | 82,35                       | 98,71           | 10,522 | 2,280                      | 7,91                                       | 23,3          |
| 15   | 64,56            | 35,44                       | 97,66           | 10,454 | 2,970                      | 6,20                                       | 23,4          |
| 16   | 16,68            | 83,32                       | 99,68           | 5,633  | 0,411                      | 3,30                                       | 22,8          |
| 17   | 18,27            | 81,73                       | 98,78           | 9,359  | 1,091                      | 3,78                                       | 22,6          |
| 18   | 72,45            | 27,55                       | 98,95           | 7,495  | 2,240                      | 4,28                                       | 22,8          |
| 19   | 17,48            | 82,52                       | 99,61           | 6,075  | 0,353                      | 3,40                                       | 22,7          |
| 20   | 17,69            | 82,31                       | 98,66           | 9,866  | 1,138                      | 6,10                                       | 22,9          |
| 21   | 10,24            | 89,76                       | 97,52           | 10,271 | 2,430                      | 7,27                                       | 22,7          |
| 22   | 16,41            | 83,59                       | 99,63           | 7,267  | 0,324                      | 1,74                                       | 22,8          |
| 23   | 17,29            | 82,71                       | 98,78           | 9,841  | 1,264                      | 6,24                                       | 22,8          |
| 24   | 76,12            | 23,88                       | 98,59           | 10,314 | 3,980                      | 6,02                                       | 24,0          |
| 25   | 15,97            | 84,03                       | 99,66           | 9,457  | 0,247                      | 6,12                                       | 24,2          |
| 26   | 16,53            | 83,47                       | 98,75           | 9,771  | 1,233                      | 7,01                                       | 23,8          |
| 27   | 13,01            | 86,99                       | 96,66           | 9,807  | 3,160                      | 5,53                                       | 24,1          |

**Table 4.9.** CFU values after 7 days of SSFprocess.

|      | Suspension + waste (final)                |                         |  |  |  |  |
|------|-------------------------------------------|-------------------------|--|--|--|--|
|      | HA                                        | SA                      |  |  |  |  |
| Exp. | CFU / cells g <sub>DM</sub> <sup>-1</sup> | CFU / cells $g_{DM}$ -1 |  |  |  |  |
| 1    | 8,16 · 10 <sup>7</sup>                    | $1,84 \cdot 10^{7}$     |  |  |  |  |
| 2    | $5,73 \cdot 10^{7}$                       | $1,04 \cdot 10^{8}$     |  |  |  |  |
| 3    | $3,30 \cdot 10^{7}$                       | $3,95 \cdot 10^{7}$     |  |  |  |  |
| 4    | $2,32 \cdot 10^{9}$                       | $3,60 \cdot 10^{8}$     |  |  |  |  |
| 5    | $3,70 \cdot 10^{7}$                       | $2,80 \cdot 10^{7}$     |  |  |  |  |
| 6    | $3,10 \cdot 10^{7}$                       | $3,36 \cdot 10^{7}$     |  |  |  |  |
| 7    | $3,00 \cdot 10^{7}$                       | $5,90 \cdot 10^{6}$     |  |  |  |  |
| 8    | $4,00 \cdot 10^{7}$                       | $3,40 \cdot 10^{6}$     |  |  |  |  |
| 9    | $4,70 \cdot 10^{7}$                       | $3,30 \cdot 10^{6}$     |  |  |  |  |
| 10   | $9,80 \cdot 10^{7}$                       | $3,70 \cdot 10^{6}$     |  |  |  |  |
| 11   | $2,88 \cdot 10^{8}$                       | $9,60 \cdot 10^{6}$     |  |  |  |  |
| 12   | $3,10 \cdot 10^{7}$                       | $5,50 \cdot 10^{6}$     |  |  |  |  |
| 13   | $2,64 \cdot 10^{8}$                       | $4,00 \cdot 10^{7}$     |  |  |  |  |
| 14   | $1,06 \cdot 10^{8}$                       | $2,56 \cdot 10^{7}$     |  |  |  |  |
| 15   | $3,10 \cdot 10^{7}$                       | $3,30 \cdot 10^{6}$     |  |  |  |  |
| 16   | $6,90 \cdot 10^{8}$                       | $9,60 \cdot 10^{6}$     |  |  |  |  |
| 17   | $3,10 \cdot 10^{7}$                       | $3,20 \cdot 10^{6}$     |  |  |  |  |
| 18   | $5,00 \cdot 10^{8}$                       | $3,00 \cdot 10^{6}$     |  |  |  |  |
| 19   | $1,40 \cdot 10^{9}$                       | $6,80 \cdot 10^{7}$     |  |  |  |  |
| 20   | $7,10 \cdot 10^{7}$                       | $4,20 \cdot 10^{6}$     |  |  |  |  |
| 21   | $1,28 \cdot 10^{8}$                       | $3,50 \cdot 10^{6}$     |  |  |  |  |
| 22   | $4,53 \cdot 10^{8}$                       | $1,09 \cdot 10^{8}$     |  |  |  |  |
| 23   | $3,10 \cdot 10^{7}$                       | $4,00 \cdot 10^{6}$     |  |  |  |  |
| 24   | $3,90 \cdot 10^{8}$                       | $5,00 \cdot 10^{7}$     |  |  |  |  |
| 25   | $3,00 \cdot 10^{8}$                       | $6,50 \cdot 10^{6}$     |  |  |  |  |
| 26   | $3,90 \cdot 10^{8}$                       | $3,20 \cdot 10^{7}$     |  |  |  |  |
| 27   | $8,90 \cdot 10^{7}$                       | $3,30 \cdot 10^{6}$     |  |  |  |  |

**Table 4.10.** Mean values ofabsorbance and reducing sugarsconcentrations in pretreated starchafter SSF process.

| Exp. | ABS / - | c(reducing sugars) / mmol L <sup>-1</sup> |
|------|---------|-------------------------------------------|
| 1    | 0,003   | 0,162                                     |
| 2    | 0,005   | 0,172                                     |
| 3    | 0,003   | 0,162                                     |
| 4    | 0,024   | 0,278                                     |
| 5    | 0,003   | 0,162                                     |
| 6    | 0,001   | 0,150                                     |
| 7    | 0,010   | 0,201                                     |
| 8    | 0,003   | 0,164                                     |
| 9    | 0,001   | 0,151                                     |
| 10   | 0,000   | 0,148                                     |
| 11   | 0,001   | 0,153                                     |
| 12   | 0,003   | 0,164                                     |
| 13   | 0,006   | 0,177                                     |
| 14   | 0,147   | 0,955                                     |
| 15   | 0,003   | 0,162                                     |
| 16   | 0,014   | 0,223                                     |
| 17   | 0,014   | 0,223                                     |
| 18   | 0,011   | 0,206                                     |
| 19   | 0,011   | 0,206                                     |
| 20   | 0,016   | 0,234                                     |
| 21   | 0,013   | 0,219                                     |
| 22   | 0,009   | 0,197                                     |
| 23   | 0,016   | 0,232                                     |
| 24   | 0,001   | 0,151                                     |
| 25   | 0,011   | 0,205                                     |
| 26   | 0,010   | 0,201                                     |
| 27   | 0,277   | 1,670                                     |

### 3.4. PHA extraction and purification

**Table 3.11.** Residual biomass and PHA accumulation values obtained after7 days of SSF process.

| Exp. | Residual biomass/ g L <sup>-1</sup> | PHA accumulation / % |
|------|-------------------------------------|----------------------|
| 1    | 78,6510                             | 0,0670               |
| 2    | 103,4366                            | 0,3184               |
| 3    | 88,2315                             | 0,1498               |
| 4    | 86,6649                             | 0,5572               |
| 5    | 81,5187                             | 0,1872               |
| 6    | 87,7520                             | 0,2145               |
| 7    | 114,5493                            | 0,0063               |
| 8    | 86,1329                             | 0,0582               |
| 9    | 88,5636                             | 0,0278               |
| 10   | 86,3361                             | 0,0311               |
| 11   | 85,8451                             | 0,0033               |
| 12   | 86,4187                             | 0,0023               |
| 13   | 75,4795                             | 0,0069               |
| 14   | 87,0705                             | 0,0256               |
| 15   | 89,5635                             | 0,0684               |
| 16   | 104,4491                            | 0,0274               |
| 17   | 109,1973                            | 0,0098               |
| 18   | 101,4261                            | 0,0060               |
| 19   | 98,7314                             | 0,0212               |
| 20   | 90,1461                             | 0,1347               |
| 21   | 88,8875                             | 0,0404               |
| 22   | 88,2411                             | 0,0388               |
| 23   | 90,2490                             | 0,0308               |
| 24   | 93,6751                             | 0,1223               |
| 25   | 89,6794                             | 0,0333               |
| 26   | 90,4475                             | 0,0302               |
| 27   | 93,5773                             | 0,5105               |

### 3.5. PHA characterisation



FTIR spectra of obtained PHAs after 7 days of SSF process in: a) exp. 1, 2 i 3; b) exp. 4, 5 i 6; c) exp. 7, 8 i 9; d) exp. 10, 11 i 12. spectra for PHA.

| Bond structure                    | Resonance type | Wavenumber / cm <sup>-1</sup> |  |
|-----------------------------------|----------------|-------------------------------|--|
| O – H                             | Stretching     | 3200 - 3550                   |  |
| CH <sub>2</sub> , CH <sub>3</sub> | Stretching     | 2850 - 3000                   |  |
| $\mathbf{C} = \mathbf{O}$         | Stretching     | 1715 – 1730                   |  |
| C – H                             | Bending        | 1350 - 1500                   |  |
| C – O                             | Stretching     | 990 - 1300                    |  |



#### 3.5. PHA characterisation

TGA



**Tablica 3.13.** Value of specific mass alterations, temperatures measured at the beginning and at the end of PHA degradation process, temperatures measured at the highest speed of PHA degradation and inorganic residues for the first 6 experiments.

| xp. | $\Delta m_1$ / % | Δ <i>m</i> <sub>2</sub><br>/ % | Δ <i>m</i> <sub>3</sub><br>/ % | Т <sub>роč.</sub> /<br>°С | T <sub>kon.</sub> ∕<br>℃ | <i>T</i> <sub>1</sub> (max.) / °C | <i>T</i> <sub>2</sub> (mSax.) / °C | <i>T</i> <sub>3</sub> (max.) / °C | Residue<br>/% |
|-----|------------------|--------------------------------|--------------------------------|---------------------------|--------------------------|-----------------------------------|------------------------------------|-----------------------------------|---------------|
| 1   | 7,58             | 47,25                          | 23,89                          | 164,24                    | 510,67                   | 59,14                             | 287,07                             | 439,22                            | 6,44          |
| 2   | 9,79             | 64,74                          | 7,40                           | 167,57                    | 587,03                   | 59,90                             | 294,14                             | 449,05                            | 9,11          |
| 3   | 7,20             | 43,28                          | 8,86                           | 165,59                    | 552,97                   | 59,70                             | 273,27                             | 441,37                            | 7,34          |
| 4   | 9,57             | 72,76                          | /                              | 161,82                    | 596,46                   | 59,65                             | 292,13                             | /                                 | 10,79         |
| 5   | 8,82             | 47,63                          | 10,67                          | 180,96                    | 559,28                   | 59,31                             | 268,35                             | 435,66                            | 14,96         |
| 6   | 8,11             | 45,97                          | 8,15                           | 182,89                    | 526,97                   | 59,26                             | 270,29                             | 450,99                            | 15,87         |

Thermograms of PHA obtained after 7 days of SSF process in experiments: a) 1; b) 2; c) 3; d) 4; e) 5; f) 6.

#### 3.5. PHA characterisation



DSC curves for PHA obtained after 7 days of SSF fermentations in experiments: a) 1; b) 2.

**Tablica 3.14.** Values of melting temperature,  $T_{\rm m}$ , glass transition temperature,  $T_{\rm g}$  and melting entalpy  $\Delta H_{\rm m}$  for PHA obtained in first 6 experiments.

| Exp. | <i>T</i> g / °C | $T_{ m m}$ / °C | $\Delta H_{ m m}$ / J g <sup>-1</sup> |
|------|-----------------|-----------------|---------------------------------------|
| 1    | /               | 95,47           | 6,71                                  |
| 2    | 22,95           | 100,26          | 6,84                                  |
| 3    | 3,67            | 84,30           | 10,99                                 |
| 4    | -10,05          | /               | /                                     |
| 5    | /               | 115,30          | 4,19                                  |
| 6    | -21,04          | 64,13           | 0,00                                  |



DSC curves for PHA obtained after 7 days of SSF fermentations in experiments: a) 3; b) 4; c) 5; d) 6.



# 4. Conclusion



Based on the scientific research of optimisation of PHA production from waste starch, the results have given the following conclusions:

- Combination of ultrasound and alkaline solution as a pretreatment method for waste starch has shown to be too intense, due to the possibility of ireverse starch gelatinisation occuring.
- The loss of moisture in starch structure after the pretreatment is a result of starch retrogradation, while increase in moisture occurs as a product of methabolic processes in microorganism cells.
- Starch contains low levels of reducing sugars due to polymer nature of starch, as well as due to technical reasons while coducting the experiments.
- Highest PHA accumulation was obtained in experiment 4 (0,5572 %, after 30 min of pretreatment, with the ultrasound power of 2 W mL<sup>-1</sup> and NaOH concentration of 0,01 mol L<sup>-1</sup>), which correlates with the given experiment design.
- Low PHA accumulations are the result of low reducing sugar content, starch pretreatment method, higher pH value and using mixed culture for SSF process. vrijednosti, to je teže rukovati sa škrobom i manje su vrijednosti akumulacije PHA.
- Low oxygen saturation after the conducted SSF process is a result of microorganisms using oxygen for the fermentation process.
- Lower CFU value after the SSF process is due to higher pH values of the supstrate.
- FTIR analysis showed the presence of PHA in the final product, which is proven by the peaks in FTIR spectra for C–O, O–H and C=O bonds stretching, as well as –CH<sub>3</sub>, –CH2– bonds bending and stretching in PHA molecules.
- TGA i DSC analyses confirmed the possible presence of homopolymers poly(hydroxybutyrate) (PHB) and poly(hydroxyvalerate) (PHV), copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with different 3HB and 3HV fractions and different scl-PHA and mcl-PHA, such as PHB, PHV and poly(hydroxyhexanoate) (PHHx).
- FTIR, TGA and DSC analyses aren't completelly suitable for PHA identification; <sup>1</sup>H NMR ili GC analyses are mandatory.

# Thank you!

