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1 Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb,
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Abstract: The environmental impact of plastic waste is a growing global challenge, primarily due
to non-biodegradable plastics from fossil resources that accumulate in ecosystems. Biodegradable
polymers like polyhydroxyalkanoates (PHAs) offer a sustainable alternative. PHAs are microbial
biopolymers produced by microorganisms using renewable substrates, including agro-industrial
byproducts, making them eco-friendly and cost-effective. This study focused on the isolation and
characterization of PHA-producing microorganisms from agro-industrial waste, including chickpeas,
chickpeas with bean residues, and starch. Screening via Sudan Black staining identified PHA-
accumulating strains such as Brevibacillus sp., Micrococcus spp., and Candida krusei, among others. To
assess the potential for PHA biosynthesis, solid-state fermentation (SSF) was conducted using agro-
industrial waste as substrates, along with a mixed culture of the isolated microorganisms. The highest
observed yield was a PHA accumulation of 13.81%, achieved with chickpeas containing bean residues.
Structural and thermal characterization of the PHAs was performed using Fourier-transform infrared
spectroscopy with attenuated total reflectance (FTIR-ATR), differential scanning calorimetry (DSC),
and thermogravimetric analysis (TGA). FTIR-ATR spectra indicated polyhydroxybutyrate (PHB),
suggesting it as the synthesized PHA type. This study highlights the potential of agro-industrial
waste for sustainable PHA production and eco-friendly bioplastics.

Keywords: agro-industrial waste; isolation and identification; solid-state fermentation;
polyhydroxyalkanoates

1. Introduction

Plastics obtained from oil and its derivatives make one of the widely used materials in
various aspects of human life. However, due to their increasing demand and production,
new problems are arising such as plastics’ toxicity, adequate disposal of plastics, and their
excessive accumulation in the environment [1]. According to Sabapathy et al. [2], over 4.8 to
12.7 million tons of plastics end up disposed in world’s oceans. Synthetic polymers exhibit
low biodegradability, making recycling alone an inadequate solution for managing their
environmental impact. Consequently, scientific research must prioritize the development
of new materials that combine high biodegradability with the mechanical and thermal
properties characteristic of synthetic polymers, aiming to replace them effectively [1]. In
this context, bioplastics have become a major focus of study. Given the significant ad-
vancements already made in this field, bioplastics are now broadly classified into natural
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and synthetic biopolymers. Natural biopolymers are further categorized based on their
production sources: those derived from biomass resources (such as polypeptides, lipids,
and polysaccharides), those produced through biotechnological processes (e.g., polylac-
tide, PLA), and those synthesized by microorganisms (such as polyhydroxyalkanoates,
PHA). Synthetic biopolymers can likewise be categorized into three main groups: aliphatic
biopolyesters (such as polycaprolactone, PCL), aliphatic copolyesters (such as polybutylene
succinate, PBS), and aromatic copolyesters (such as polybutylene adipate terephthalate,
PBAT) [3]. According to data from European Bioplastics [4], global plastic production
exceeds 400 million tons annually, of which only around 0.5% consists of bioplastics. In
2023, the global production capacity for bioplastics was approximately 2.18 million tons.
Of this, biodegradable plastics represented 52.1%, with PLA accounting for 31.0%, starch-
containing polymer compounds (SCPC) for 6.4%, and PHAs for 4.8%, making them the
most widely produced types. Production capacity for bioplastics is projected to grow
to 7.43 million tons by the end of 2028, with biodegradable bioplastics expected to con-
stitute 62.0% of this capacity. In this paper, PHAs and their synthesis methods will be
further discussed.

PHAs are defined as biodegradable polyesters composed of various hydroxyalkanoate
monomers [1]. This material has several properties, like high crystallinity, biodegradabil-
ity, and resistance against ultraviolet radiation. Due to the presence of these properties,
this material has been used for the packaging material of foods and medicines [5]. PHA
are notable for their unique biosynthesis process, which occurs under nutrient-limited
conditions in specific microorganisms. In these conditions, a substrate rich in carbon
but limited in nitrogen, phosphorus, magnesium, and other essential nutrients is pro-
vided. Under such fermentation conditions, microorganisms accumulate different types
of PHAs as an alternative energy storage compound [6]. Currently, over 150 different
types of PHAs have been identified, primarily classified by the number of carbon atoms
in the side chain of their monomer units. PHAs are categorized into three main groups:
short-chain-length PHAs (scl-PHAs), which contain 3 to 5 carbon atoms; medium-chain-
length PHAs (mcl-PHAs), which consist of 6 to 14 carbon atoms; and long-chain-length
PHAs (lcl-PHAs), which have 15 or more carbon atoms in their side chains [7]. Addi-
tionally, PHAs can be classified as either homopolymers (homopolyesters), composed
of a single type of monomer, or copolymers (copolyesters), made up of two or more
different monomers [8]. Among the most produced PHAs by microorganisms are poly(3-
hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). PHB
belongs to the scl-PHA group, while PHBV is categorized within the scl- and mcl-PHA
copolymer group [9,10]. PHBV is the most influential and inclusive biodegradable poly-
mer among the PHA polymer family, showcasing significant potential as a sustainable
replacement for conventional plastics [5]. Microorganisms capable of producing scl-PHAs
include Bacillus megaterium [11], Cupriavidus necator [12,13], Escherichia coli [14], Bacillus
cereus [15], Chromobacterium violaceum [16,17], Alcaligenes latus [18], Paracoccus denitrifi-
cans [19], Azotobacter vinelandii [20], Halomonas alkalicola [21], and Bacillus megaterium [22];
mcl-PHA producers include Aeromonas hydrophila [23], Pseudomonas putida [24,25], Pseu-
domonas nitroreducens [26,27], Pseudomonas aeruginosa [25,28], Pseudomonas entomophila [29];
and lcl-PHA producers include Pseudomonas aeruginosa [30,31] and Bacillus thuringiensis [32].

One of the most common methods for producing PHAs is through the fermentation
of sugars and fatty acids [33]. There are two generations of biomass that can be utilized
in this fermentation process. The first generation consists of food products that serve as
substrates for PHA production, including corn, sugarcane, beans, and nuts. While these
resources are widely available, utilizing food products for PHA production can lead to
increased food prices and a reduction in food supply. According to the Food and Agriculture
Organization of the United Nations (FAO) [34], replacing the 170 million tons of global
plastic food packaging produced annually with bioplastics would require 54% of corn crops
and over 60% of Europe’s drinking water. Consequently, alternative sources such as agro-
industrial waste are increasingly utilized as feedstock for PHA production [35,36]. This



Polymers 2024, 16, 3407 3 of 26

second generation of biomass, characterized by its lignocellulosic structure, generates over
1.3 billion tons annually [37], with much of it being disposed of in landfills or incinerated.
This waste contributes significantly to environmental issues, including greenhouse gas
emissions and toxic degradation byproducts, resulting in a carbon footprint equivalent to
approximately 3.3 billion tons of CO2 released into the atmosphere. These facts highlight
the urgent need to address agro-industrial waste through alternative methods that align
with the principles of a circular economy.

Potato starch waste and chickpea waste are among the promising agro-industrial
residues for PHA production. Potato starch waste is a by-product of industrial potato
processing, primarily recovered from wastewater used to rinse peeled potatoes, along with
other starch sources such as residual tubers, peels, and potato pulp. After sedimentation
and starch separation, the remaining starch is filtered and dried [38–40]. Starch, comprising
the polysaccharides amylose and amylopectin, is an abundant source of glucose monomers,
which makes it a highly suitable substrate for PHA synthesis [41]. Chickpea waste, derived
from the legume Cicer arietinum, is rich in macromolecules, including proteins [12.4–31.5%],
starch [41–50%], unsaturated fatty acids (6%), lignocellulose, vitamins (e.g., riboflavin,
thiamine), and minerals (iron, calcium) [42,43]. Primarily used as a protein source, chick-
peas undergo processing that removes husks, leaving behind husks and spoiled chickpeas
as waste. With suitable pretreatment, these macromolecules can be broken down into
components usable by microorganisms for PHA synthesis [44].

Lignocellulose is composed of three main components: cellulose, hemicellulose, and
lignin. Cellulose and hemicellulose form an interconnected fibrous network, with lignin
providing structural reinforcement. A significant challenge in utilizing agro-industrial
waste for PHA production lies in the inherent resistance of lignocellulosic materials to
microbial degradation. To enhance their bioavailability, various pretreatment methods are
employed, including physical (e.g., ultrasonic [45], thermal [46–48], hydrothermal [49,50]),
chemical (e.g., acidic hydrolysis [51,52], alkaline hydrolysis [53–55], oxidative agents [56]),
physico-chemical (e.g., steam explosion [57–59], combined ultrasonic and alkaline treat-
ments [60–62], extrusion [63]), biological (e.g., bacterial [64], fungal [65], enzymatic [66–69]),
and “green-solvent” methods (e.g., ionic liquids [70], eutectic solvents [71,72], supercritical
fluids [73]). These pretreatment strategies enhance waste porosity, surface area, and particle
size optimization, increasing the concentration of reducing sugars essential for fermenta-
tion [35,74,75]. Table 1 summarizes agro-industrial wastes, corresponding pretreatment
methods, and microbial species utilized for PHA synthesis.

Table 1. Agro-industrial waste type and microorganisms used for production of PHA.

Agro-Industrial Waste Pretreatment Method Microorganism PHA Yield Ref.

Apple pulp waste n.a. Pseudomonas citronellolis
NRRL B-2504 30 ± 1.7% [76]

Sugar beetroot pulp Enzymatic–recombinant
endoglucanase (rCKT3eng), chemical hydrolysis Haloarcula sp. TG1 45.6%/17.8% [77]

Wheat grains Acidic hydrolysis
(hydrochloric acid) Bacillus sp. NII2 1.413 mg/L [78]

Tequila bagasse
Bacterial pretreatment

(Saccharophagus degradans
ATCC 43961)

Saccharophagus
degradans ATCC 43961 1.5 mg/L [79]

Coffee ground n-hexane oil extraction, acidic hydrolysis
(sulphuric acid), and enzymatic digestion

Burkholderia cepacia
ATCC 17759 2.69 ± 0.07 g/L [80]

Canola oil n.a. Wautersia eutropha
ATCC 17699 18.27 g/L [81]

Sugarcane molasse n.a. Bacillus cereus SPV 61.07% [15]
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For achieving high levels of PHA accumulation, specific cultivation conditions must
be optimized, including moisture, pH, temperature, and the carbon-to-nitrogen (C/N)
ratio [82]. Moisture content is essential as it supports fermentation by creating an optimal
environment for microbial growth. Insufficient moisture can lower nutrient solubility,
while excessive moisture may inhibit enzyme activity. So, the ideal level should align with
the biological needs of the microorganisms used [75]. Research by Catherine et al. [83]
indicates that, within a certain range, pH has minimal impact on final PHA accumulation.
For instance, pH values of 6.8, 7.3, 7.8, 8.3, and 8.8 led to PHA yields between 18 and 20%
of dry cell weight, showing negligible variation. Conversely, Villano et al. [84] observed
a decline in PHA yield as pH rose from 7.5 to 9.5, suggesting that the effect of pH on
PHA accumulation may depend on the substrate, microorganisms, or other experimental
parameters. Temperature also plays a critical role, with the highest PHA accumulations
reported between 20 ◦C and 35 ◦C [83,85]. Temperatures outside this range can partially
inactivate or inhibit metabolic pathways, reducing PHA production or even leading to
PHA degradation. The C/N ratio further influences PHA synthesis, though requirements
may vary by microorganism. Generally, the best yields are achieved with a high C/N
ratio, as PHA production is favored in conditions where carbon is abundant, and nitrogen,
magnesium, and phosphorus are limited. Wang et al. [86] demonstrated this by testing
glucose and ammonium chloride in C/N ratios of 3.6:1, 36:1, and 360:1. The results
confirmed that the highest PHA accumulation occurred at a 360:1 ratio, underscoring the
importance of a high C/N ratio for optimal PHA yield.

PHA production can be achieved through two primary fermentation methods: Solid-
State Fermentation (SSF) and Submerged Fermentation (SmF). In the SSF process, microor-
ganisms grow and produce PHAs using a solid substrate that provides both support and
nutrients. The substrate must contain an optimal level of moisture to facilitate microbial
metabolic activity. SSF is particularly valuable for bioconversion of agro-industrial wastes
into biofuels, biomaterials, or chemicals. The process can be divided into three stages: up-
stream, midstream, and downstream processes. During the upstream phase, the substrate
and growth media are prepared, and microorganisms (often sourced from the waste itself)
are isolated. The midstream phase is centered around fermentation, including substrate
inoculation, incubation, and continuous monitoring and control of fermentation conditions.
In the downstream phase, the final product is extracted, purified, and any residual biomass
and organic waste are disposed of properly [87–89]. In contrast, the SmF process utilizes an
aqueous system containing various nutrients and microbial suspension. SmF can be carried
out in both batch and continuous (flow) bioreactors. In a batch process, nutrients and inocu-
lum are added once, and the process ends when all nutrients have been converted into the
desired product. The flow bioreactor, however, operates as an open system, where liquid
nutrient broth and inoculum are continuously added while the product is simultaneously
removed. As in SSF, any residual biomass from the fermentation is properly disposed of
after the process is completed. Throughout both fermentation methods, key parameters
such as temperature, pH, oxygen levels, and nutrient concentrations are continuously
monitored to ensure optimal microbial growth and PHA production [90–92].

The following step in PHA production is extraction, which can roughly be divided
into three parts. Extraction usually begins with the separation of dry cell weight from
the residual biomass. After that, the cell wall is pretreated by heating, freezing, and
thawing or by using alkaline or sodium chloride solution. These methods allow the PHA
granules to exit the cells easily. The last part includes disrupting the cell completely and
genuine extraction of PHAs by using appropriate solvent [8]. Cell disruption is most
often carried out with sodium hypochlorite [93–95], hydrogen peroxide [96], various
surfactants [97,98], enzymes [99] etc. Generally, using sodium hypochlorite, surfactants
or enzymes gives high-quality and high-purity products. However, sodium hypochlorite
can severely reduce the molecular weight of the obtained PHA, while using surfactants
or enzymes is not financially beneficial due to the cost of the enzymes and the need
for surfactant wastewater treatment [100]. To reduce the mentioned disadvantages, these
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chemicals can be combined in the cell disruption process. Marudkla et al. [101] used sodium
dodecyl sulfate (0.5% w/v) and sodium hypochlorite (6% v/v) for PHB extraction and
recorded 78.70% PHB recovery. Since PHAs are highly soluble in chlorinated hydrocarbons
(mainly chloroform [102,103], dichloromethane [104]), they are frequently used for their
extraction from microorganisms’ cells. Their main disadvantages are their toxicity and a
large amount that should be disposed after the extraction [99]. Recently, methods such as
supercritical fluid extraction [105,106], eutectic solvent extraction [71] and phage lysis [107]
have been investigated. These methods have shown to be highly selective for PHAs, rapid,
and environmentally friendly; however they are dependent on strictly defined process
parameters that have to be constantly controlled and optimized (phage lysis can be carried
out only on genetically modified microorganisms) [8].

The objective of this study was to isolate and identify microorganisms from various
agro-industrial waste biomass sources, including chickpeas, chickpea-bean residues, and
starch, in order to assess their potential for PHA production through SSF. Furthermore, the
study aimed to characterize the produced PHA polymers using FTIR-ATR spectroscopy,
differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The find-
ings were intended to offer valuable insights into the feasibility of utilizing agro-industrial
waste as a sustainable feedstock for biopolymer production, potentially reducing the
environmental impact of plastic pollution.

2. Materials and Methods
2.1. Physico-Chemical Characterization of Agricultural Waste

The substrates used in this experiment included waste starch, waste chickpeas (referred
to as chickpea 1), and waste chickpeas with bean residues (referred to as chickpea 2). The
starch was obtained from Kanaan d.o.o., located in Donji Miholjac, Croatia, while both
types of waste chickpeas were sourced from Podravka d.d. in Koprivnica, Croatia. For the
experiments, the substrates were homogenized using a knife mill GRINDOMIX GM 200
(Retsch GmbH, Haan, Germany) to achieve a uniform particle size. The substrates were
analyzed for moisture content (MC) [108], dry matter (DM), volatile matter (VM) [109],
nitrogen [110], and carbon [111] content. Additionally, the pH value and concentration of
reducing sugars (RS) were measured to assess the chemical characteristics of the substrates.
The pH-value of the substrates was determined by SenTix® 940 electrode (Xylem Inc., New
York, NY, USA) and the concentration of RS was determined using the DNS method [112].
For this analysis, 10 g of each substrate (dry weight) was mixed with 100 mL of distilled
water in 250 mL Erlenmeyer flasks and incubated at 37 ◦C for 40 min. Following incubation,
the mixtures were subjected to centrifugation at 5500 rpm for 10 min using a Sigma 3K15
centrifuge (Sigma Laborzentrifugen GmbH, Osterode am Harz, Germany). The supernatant
was then decanted, and 1 mL of each sample was transferred into cuvettes. Subsequently,
1.5 mL of DNS reagent was added to each sample, and the absorbance for determining
the concentration of reducing sugars was measured at a wavelength of 575 nm using a
DR3900 spectrophotometer (Hach, Loveland, CO, USA). These analyses were essential for
understanding the physical and chemical properties of the substrates, which are crucial
for evaluating their suitability as growth media for microbial isolation and subsequent
fermentation processes.

2.2. Isolation and Identification of PHA-Producing Microorganisms

To isolate microorganisms from substrates, waste starch, chickpea 1, and chickpea 2,
10 g of each substrate (dry weight) was weighed and suspended in 100 mL of sterile dis-
tilled water in Erlenmeyer flasks. Eluates were prepared following ISO 21268-3:2019 [113]
guidelines. The flasks were placed on a Biosan PSU-20i Orbital Shaker (Biosan, Riga, Latvia)
at 160 rpm for 24 h at ambient temperature. After 24 h, bacterial and fungal colony-forming
units (CFUs) were quantified on general-purpose media: nutrient agar (NA) for bacterial
colonies and malt agar (MA) for fungal colonies, using the pour plate method as described
by Briški et al. [114]. For all substrates, serial dilutions were prepared using a 0.9% NaCl
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aqueous solution (from 100 to 10−9), plated, and colonies were enumerated on the plates
where the colony count fell within the optimal range of 20 to 400, ensuring accuracy and
statistical reliability in the quantification of microbial populations. The plates were incu-
bated at 80% relative humidity, with fungi cultivated at 28 ◦C and bacteria at 37 ◦C. After
incubation, the number of colonies on agar plates were determined. The average CFU
values for bacteria and fungi were determined by counting two serial dilutions as follows:

Before the experiment: Bacterial CFU: chickpea 1: 10−8 and 10−9; chickpea 2 and
starch: 10−7 and 10−8; Fungal CFU: chickpea 1 and starch: 10−5 and 10−6; chickpea 2: 10−6

and 10−7.
At the end of the experiment: Bacterial CFU: chickpea 1 and 2: 10−8 and 10−9; starch:

10−7 and 10−8; Fungal CFU: chickpea 1 and 2; and starch: 10−6 and 10−7.
The results were expressed as CFU of microorganisms per gram of dry matter. Bacterial

and fungal colonies with distinct morphological characteristics and predominance on
nutrient agar (NA) and malt agar (MA) plates were selected and transferred to fresh NA
and MA plates for isolation. Bacterial isolates were incubated at 37 ◦C for 24–48 h, while
fungal isolates required incubation at 28 ◦C for 3–5 days, as outlined in the method by
Briški et al. [114]. To ensure purity, transfers to fresh media were repeated until single-
species colonies were confirmed. After isolating pure cultures, each was preserved on slant
agar to ensure viability for subsequent characterization and analysis. All microorganisms
were stained with a 0.02% Sudan Black solution to assess their PHA production capacity.
According to Kumar et al. [115], colonies that produced PHA exhibited a distinct dark blue
coloration, while non-producing colonies retained their original color. This staining method
effectively indicates PHA accumulation in microbial cells, facilitating the differentiation
between PHA-producing and non-producing strains. Such differentiation is essential for
selecting microorganisms for further investigation and potential applications in bioplastics
and sustainable material production.

Identifying PHA-producing pure cultures involved systematically evaluating the
isolated microorganisms, encompassing both bacterial and fungal species. Initially, the
cultures were assessed based on their growth characteristics on agar plates, with partic-
ular attention to colony morphology, including variations in appearance, coloration, and
shape [116]. This qualitative assessment facilitated preliminary identification is based on
established taxonomic criteria. Subsequently, the cellular morphology of the isolates was
analyzed using a light microscope (KERN OBE 134, KERN, and SOHN GmbH, Balingen,
Germany). This microscopic examination provided essential information regarding the
structural characteristics, such as cell shape, arrangement, and any distinctive features,
which are critical for accurate microbial classification. For bacteria, identification followed
the procedures outlined in the Manual of Determinative Bacteriology, which included tech-
niques such as Gram staining and the KOH test [116]. Additional tests included oxidase,
catalase, and nitrate-reductase assessments [116], along with a series of biochemical tests
known as API (Analytical Profile Index, BioMérieux®, Lyon, France), utilizing API CH 50,
API 20NE, API 20E, API Staph, and API Strep tests. Yeasts were identified using the API
20C AUX test. The final step of the identification of bacteria was a matrix-assisted laser
desorption/ionization time of flight mass spectrometry (Microflex LT MALDI-TOF MS,
Bruker Daltonics, Bremen, Germany) analysis, which is based on the protein identification
of pulsed single ionic analytes (pure microbial culture), coupled with a TOF measuring
mass analyzer, and the exact protein mass was determined.

2.3. PHA Production from Agricultural Waste via Solid-State Fermentation with Mixed
Microbial Cultures

Isolated pure cultures capable of producing PHA were prepared as inoculum for
PHA production from agricultural waste (Figure 1). Bacterial cultures were cultivated
on NA at 37 ◦C for 24 h, while fungal cultures were cultivated on MA at 28 ◦C for 48 h.
After incubation, each bacterium and fungi were harvested using a sterile inoculation
loop and transferred into 25 mL of nutrient broth and malt broth, respectively. These
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suspensions were then incubated aerobically on a rotary shaker (Biosan PSU-20i Orbital
Shaker, Riga, Latvia) at 160 rpm and 30 ◦C for 18 h to promote further growth and enhance
the inoculum for subsequent applications in PHA production. The CFU value of the
obtained pure bacterial and fungal suspensions was between 108 and 109. The next step
involved preparing three distinct mixed culture suspensions using microorganisms isolated
from waste starch, chickpeas 1, and chickpeas 2. One milliliter of each pure culture
suspension was added to 50 mL of sterile water and thoroughly homogenized. The
obtained suspensions were uniformly applied to 100 g of waste starch, chickpeas 1, and
chickpeas 2, respectively. Solid-state fermentation was conducted in 0.5 L glass Erlenmeyer
flasks that had been sterilized by autoclaving at 121 ◦C for 20 min. Each flask was filled
with 100 ± 1 g of the inoculated substrate and incubated in a thermostat at 30 ◦C for 7 days.
The initial experimental conditions are summarized in Table 2. At the end of experiments,
physical-chemical characterization was also performed (see Section 2.1).
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Table 2. Physico-chemical and microbiological properties of agricultural wastes (standard deviation
was between ±0.021 and ±0.044).

Substrate w(MC)/% w(DM)/% w(VM)/% pH/− ω(RS)/mg
gDM−1 CFUbacteria/gDM CFUfungi/gDM w(C)/% w(N)/%

Chickpea 1 58.06 41.94 97.69 5.545 45.47 9.8 × 109 1.6 × 107 54.27 3.93
Chickpea 2 59.86 40.14 97.72 5.011 56.78 1.2 × 109 1.5 × 108 54.28 4.02

Starch 44.77 55.23 99.36 4.453 33.54 1.5 × 108 7.4 × 106 55.20 0.02

MC—moisture content; DM—dry matter; VM—volatile matter; RS—reducing sugars; CFU—Colony Forming Unit.
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The biomass produced during solid-state fermentation was quantified gravimetri-
cally following two consecutive solid–liquid extractions, as described by Martínez-Avila
et al. [66]. In summary, the extraction involved mixing the fermented sample (5–8 g) with
distilled water at a 1:3 ratio in an orbital shaker set at 160 rpm and 30 ◦C for 30 min. The
supernatant was then vacuum filtered through AP25 paper and collected quantitatively in
Falcon tubes. The filtered solution was centrifuged at 5000 rpm and 4 ◦C for 15 min, after
which the supernatant was discarded. The pellet containing the biomass was washed with
distilled water and centrifuged at 5000 rpm for 15 min to recover the solid fraction. The
resulting pellet was dried at 60 ◦C for 24 h and weighed to determine the biomass or cell dry
weight (CDW) in the solid sample. PHA extraction from the dried biomass was performed
using the method outlined by Law and Slepecky [117,118]. The biomass was resuspended
in a 10–13% v/v sodium hypochlorite solution and incubated at 37 ◦C for 1 h to disrupt the
cell membranes. Intracellular lipid granules were then separated and washed with water,
acetone, and ethanol, respectively, through centrifugation at 5000 rpm for 15 min. Finally,
the dissolved polymer was extracted by incubating the mixture in boiling chloroform
for 2 min, followed by filtration of the solution containing the dissolved polymer. PHA
accumulation was calculated according to the following equation, Equation (1) [116]:

PHA accumulation(%) =
Dry weight of extracted PHA

( g
L
)

DCW
( g

L
) ×100% (1)

where DCW is dry weight of biomass.
The characterization of PHA produced after 7 days of experimentation was performed

using an FTIR spectrometer (FTIR-8400S, Shimadzu, Kyoto, Japan) equipped with an ATR
sampling accessory (MIRacle™ Single Reflection ATR, PIKE Technologies, Fitchburg, WI,
USA), covering a spectral range from 4000 to 650 cm−1. Approximately 15 mg of the
extracted PHA sample was carefully placed on the ATR prism, ensuring complete surface
coverage for optimal spectral acquisition. The recorded spectra were then analyzed and
processed using IR Solution software 1.6 (Shimadzu, Kyoto, Japan) to accurately identify
the characteristic functional groups present in the sample. Each sample was measured
at least four times and only the most representative spectra were selected. The thermal
properties of PHA, specifically the melting temperature (Tm) and crystallization tempera-
ture (Tc), were assessed using differential scanning calorimetry (DSC) on a Mettler Toledo
DSC 3 Star System (Mettler Toledo, Columbus, OH, USA). The DSC analysis involved
heating samples from room temperature to 200 ◦C, followed by a three-minute isothermal
hold. The samples were then cooled from 200 to −60 ◦C and reheated to 200 ◦C. This
process generated a thermogram that illustrates the relationship between heat flow and
temperature. Additionally, thermogravimetric analysis (TGA) was conducted using a TGA
Q500 thermogravimetric analyzer (TA Instruments, New Castle, DE, USA). Approximately
5–7 mg samples were heated from 40 to 700 ◦C at a constant rate of 10 ◦C min−1 under a ni-
trogen atmosphere (60 mL min−1). The resulting thermograms were analyzed to determine
mass loss, thermal stability, and decomposition temperature ranges of the PHA samples.

All experiments and measurements were performed in triplicate. The standard devia-
tion (σ) was calculated using Equation (2):

σ =
√∑(x − x)2

n
(2)

where x represents individual measurements, x is the mean value, and n is the number of
measurements. The standard deviation was then expressed as ± and added to the reported
results. All calculations were performed using Microsoft Excel (part of the Microsoft
Office Suite).
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3. Results and Discussion
3.1. Isolation and Identification of PHA-Producing Microorganisms

Microorganisms with the potential to produce PHA were successfully isolated from
three distinct carbon sources: starch, chickpea 1, and chickpea 2. A total of 12 microorgan-
isms were isolated and identified, comprising 8 bacterial cultures and 4 yeast cultures. To
assess their capability to produce PHA, the Sudan Black staining method was employed.
This technique involves the use of a 0.02% Sudan Black solution [119], which selectively
stains intracellular lipid granules, including PHA (Figure 2). The analysis revealed that the
colonies exhibited a dark blue coloration, indicating the accumulation of PHA within the
cells. This distinct color change serves as a visual marker for PHA production, allowing
for easy differentiation between PHA-producing and non-producing strains. Notably, the
intensity of the blue coloration correlates with the quantity of PHA accumulated, providing
a qualitative assessment of the production capacity of each isolated microorganism. Such
visual indicators are critical for selecting optimal microorganisms for further study and
potential industrial applications in bioplastics.
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(H,H1,H2), M = 1000×. 

Figure 2. Obtained pure cultures by streaking method, cultures stained with Sudan Black dye, and
microphotographs of Gram staining of bacteria isolates Brevibacillus sp. (A,A1,A2), Empedobacter
brevis; (B,B1,B2), Aneurinibacillus aneurinilyticus; (C,C1,C2), Micrococcus spp.; (D,D1,D2), Leuconostoc
sp; (E,E1,E2), Bacillus licheniformis; (F,F1,F2), Staphylococcus lentus; (G,G1,G2), Citrobacter freundii;
(H,H1,H2), M = 1000×.

Table 3 presents the microorganisms identified from the three agricultural waste
sources, accompanied by their morphological characteristics. The successful isolation and
characterization of these microorganisms not only emphasize their potential for biopolymer
production but also demonstrates the feasibility of leveraging diverse agricultural waste
for sustainable PHA synthesis. Notably, the results indicated that most PHA-producing
microorganisms were isolated from starch, suggesting that starch serves as a particularly
advantageous carbon source for the growth and metabolism of these organisms. This
observation can be attributed to several interrelated factors. Starch, as a polysaccharide
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composed of glucose units, can be easily metabolized by a wide range of microorganisms.
The availability of these simple sugars provides an efficient energy source, facilitating
microbial growth. Additionally, some microorganisms may possess specific enzymatic
pathways, such as amylase, which enable them to efficiently degrade starch into simpler
sugars that can be utilized for growth and biopolymer production [120]. Furthermore, the
conditions during the isolation and cultivation processes may have favored the growth
of starch-utilizing microorganisms over those that metabolize chickpeas. Environmental
factors such as pH, temperature, and moisture levels play a significant role in the prolifer-
ation of microorganisms, especially those involved in starch degradation [121]. Overall,
these findings highlight the significance of selecting appropriate carbon sources to optimize
microbial growth and biopolymer production in biotechnological applications, reinforcing
the role of agricultural waste as a valuable resource in sustainable PHA synthesis.

Table 3. Morphology of identified microorganisms isolated from agricultural waste.

Substrate Identified Microorganism Morphology

Chickpea 1

Brevibacillus sp. Transparent with flat elevation, and regular round configuration, rod shaped

Empedobacter brevis Orange with flat elevation, and regular round configuration, rod shaped

Aneurinibacillus aneurinilyticus Brownish with raised elevation, and regular round configuration, rod shaped

Chickpea 2
Micrococcus spp. Orange with flat elevation, and regular round configuration, round

shaped (cocci)

Trichosporon asahii White and cracked in the middle with smooth and shiny edges

Starch

Leuconostoc sp. White with flat elevation, and regular round configuration, cocci/coccobacilli

Bacillus licheniformis White with raised elevation, wavy and smooth edges, rod shaped

Staphylococcus lentus Transparent with raised elevation, and regular round configuration, round
shaped (cocci)

Citrobacter freundii Transparent with raised elevation, irregular shape with twisted edges,
rod shaped

Cryptococcus humicola Yellowish with raised elevation, round shape with jagged edges

Geotrichum klebahnii White with flat elevation, filamentous shape with jagged edges

Candida krusei White with raised elevation, and regular round configuration

Bacteria can be categorized into two primary groups based on their morphological
features: rod shaped (bacilli) and spherical (cocci) [122]. The results of the isolation of
bacteria from chickpea 1, chickpea 2, and starch showed that rod-shaped bacteria were the
most dominant. Among these were Brevibacillus sp., Empedobacter brevis, and Aneurinibacillus
aneurinilyticus, isolated from chickpea 1, along with Bacillus licheniformis and Citrobacter
freundii, isolated from starch. Based on the properties of their cell walls, isolated bacteria
were classified as either Gram-positive or Gram-negative.

According to the literature [123], research has shown that most bacteria capable of
producing PHA have been found to be Gram-negative. Among the eight isolated bacterial
strains, only two—Empedobacter brevis and Citrobacter freundii—exhibited red staining when
examined under a microscope. This observation indicates that these strains are Gram-
negative bacteria, as evidenced by their inability to retain the crystal violet stain used in
the Gram staining procedure. This characteristic is a fundamental aspect of their cell wall
structure, which is typically thinner and surrounded by an outer membrane containing
lipopolysaccharides. The remaining 6 bacterial strains, Brevibacillus sp., Aneurinibacillus
aneurinilyticus, Micrococcus spp., Leuconostoc sp., Bacillus licheniformis, and Staphylococcus
lentus, showed purple staining upon microscopic examination, indicating that they are
Gram-positive bacteria. While Gram-negative bacteria are well-known as the main and
most researched producers of PHAs, recent studies highlight that certain Gram-positive
bacteria can also produce these biopolymers, particularly PHB [124,125]. This ability is
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due to the presence of specific genes and enzymes, such as phaC (PHA synthase) and phaA
(β-ketothiolase) [126], which are crucial for the PHA biosynthesis process. These enzymes
help polymerize hydroxyalkanoic acid monomers into PHA polymers, allowing Gram-
positive bacteria to produce and accumulate significant amounts of PHA when grown under
suitable conditions. These findings are consistent with previous reports that recognize
Gram-positive genera, such as Bacillus [125,127,128], Rhodococcus [129,130], Staphylococ-
cus [131,132], Corynebacterium [133], and Nocardia [134,135] as efficient PHA producers.
Unlike Gram-negative bacteria, which have an outer membrane rich in lipopolysaccha-
rides, Gram-positive bacteria have a thicker peptidoglycan layer in their cell walls. This
structural difference has been shown to provide certain advantages in biotechnological
applications, including simplified downstream processing due to the absence of endotoxins
and lipopolysaccharides, which are often problematic in the purification of biopolymers
from Gram-negative strains. Furthermore, Gram-positive bacteria tend to grow faster and
are more resistant to various environmental stresses, making them appealing candidates for
large-scale industrial applications. Their ability to accumulate PHA under nutrient-limiting
conditions, such as nitrogen or phosphorus limitation, coupled with their robustness in
diverse environments, positions Gram-positive bacteria as promising microorganisms for
sustainable biopolymer production.

Figure 2 illustrates the bacterial strains cultured on NA plates, including those stained
with Sudan Black dye, alongside microscopic images of Gram-stained bacteria. The findings
from the Gram staining, KOH test, and biochemical assays are summarized in Table 4.

Table 4. Results of Gram staining, KOH test, and biochemical tests for bacteria isolates (+ is for Gram
positive and − is for Gram negative).

Identified Bacteria Gram Staining KOH Test Oxidase Catalase Nitrate-Reductase

Brevibacillus sp. +ve + + + +
Empedobacter brevis −ve + +/− + −

Aneurinibacillus
aneurinilyticus +ve + + + −

Micrococcus spp. +ve + +/− + +/−
Leuconostoc sp. +ve − − - −

Bacillus licheniformis +ve − − + +
Staphylococcus lentus +ve − − + +
Citrobacter freundii −ve − − + +

For additional confirmation of Gram staining results, a rapid KOH test was also
conducted. Since Gram-negative bacteria have a thin peptidoglycan layer in their cell
walls, in contact with 3% KOH solution they form thin filaments, indicating a positive
KOH test result (+). On the other hand, Gram-positive bacteria do not form filaments
with KOH solution, which is marked as a negative KOH test result (−). When comparing
the results of Gram staining and KOH test (Table 4), a few inconsistencies from expected
outcomes were noticed, particularly for Brevibacillus sp., Aneurinibacillus aneurinilyticus,
Micrococcus spp., and Citrobacter freundii. Several factors can lead to false results in the KOH
test. In the case of Gram-negative bacteria, inaccurate KOH test results may occur due to an
insufficient amount of bacteria. In contrast, for Gram-positive bacteria, false results tend to
occur due to an excessive number of bacteria or growth of bacterial colonies with “sticky”
structure [136].

A crucial step for identification of bacteria is conducting biochemical tests, as these tests
reveal the presence of specific enzymes, such as oxidase, catalase, and nitrate-reductase [137].
Catalase is produced by many aerobic and most facultative anaerobic bacteria, breaking
down H2O2 into water and oxygen [138]. The catalase test detects this enzyme, with a posi-
tive result shown by oxygen bubbles. Aerobic bacteria often contain cytochrome C oxidase,
which reduces oxygen to water. Tests using N,N,N’,N’–tetramethyl-p-phenylenediamine
turn purple in its presence [138]. The final biochemical test identifies nitrate-reducing
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bacteria by detecting their ability to reduce nitrate to nitrite, indicated by the appearance of
a pink color [139]. All the isolated bacteria, with the exception of Leuconostoc sp., showed
positive results in catalase test (Table 4). In this study, various API strip tests were utilized
to identify and characterize isolated bacterial strains, leveraging their metabolic and bio-
chemical profiles. These standardized kits, including API CH50, API 20E, API 20NE, API
Staph, and API Strep for bacteria, and API 20C AUX [140] for yeasts, provide efficient,
reliable, and reproducible tools for species identification in microbiological diagnostics.
Each test uses specific reagents and interprets results through a comprehensive database,
enabling precise species classification. The API CH50 strip [141] is designed to test the
fermentation of 50 different carbohydrates and assess related metabolic activities. This
system is particularly effective for classifying both Gram-positive and Gram-negative bac-
teria based on their ability to metabolize various compounds, making it a valuable tool
for identifying bacteria from diverse environmental and clinical samples. In this study,
API CH50 was used for the identification of Brevibacillus sp., Aneurinibacillus aneurinilyti-
cus, Leuconostoc sp., and Bacillus licheniformis. For the identification of Brevibacillus sp.,
Bacillus licheniformis and Aneurinibacillus aneurinilyticus API 20NE [142] also used s for
broader metabolic characterization, including oxidase, nitrate reduction, and enzymatic
activities. The API 20NE strip evaluates 20 biochemical reactions, including carbohydrate
assimilation, and is particularly useful for identifying opportunistic pathogens outside the
Enterobacteriaceae family. It was used for identifying Empedobacter brevis. API Staph [143]
identifies Staphylococcus species and other Gram-positive cocci by analyzing traits like
enzyme activity (e.g., coagulase and urease) and carbohydrate fermentation. This strip was
used for identifying Micrococcus spp. and Staphylococcus lentus. The API Strep test [144],
tailored for identifying Streptococcus species, tests for their ability to ferment sugars and
perform other specific metabolic activities. However, no strains were identified using
this system in this study. Finally, Citrobacter freundii, a glucose-fermenting Gram-negative
bacterium from the Enterobacteriaceae family, was identified using the API 20E kit [145].
This test is specifically designed for Enterobacteriaceae, assessing characteristics like citrate
utilization, lysine decarboxylase activity, and fermentation patterns. The identification
process included the use of MALDI-TOF MS, which was employed as the final confirmation
step following the API strip tests [146]. This technique is based on protein profiling, provid-
ing high-resolution identification of microorganisms through mass spectrometric analysis.
MALDI-TOF MS identifies microorganisms by analyzing the protein fingerprint of pure
microbial cultures. It uses a laser to ionize the sample, producing singly charged ions from
the proteins present. These ions are then measured by a time-of-flight mass analyzer, which
determines the exact mass of the proteins. By comparing the resulting spectra to a compre-
hensive database, the genera and species of the isolates were accurately confirmed. This
method offers advantages such as rapid identification, high specificity, and reproducibility,
making it an essential complement to biochemical testing for microbial classification.

Among the identified bacteria, only a few of them have been previously explored and
reported for PHA production. According to the literature, Aneurinibacillus sp. [147], Cit-
robacter freundii, and Leuconostoc spp. [148] are known to produce PHB. Lastly, bacteria from
genera Micrococcus and Staphylococcus are associated mostly with scl-PHA production [147].

Studies on yeast-based PHA production are less extensive than those focused on
bacteria. However, in this investigation, four yeast strains were identified, and their
morphological characteristics were examined using a light microscope, following the
methodologies outlined in “Introduction to Industrial Mycology” [149]. Table 3 provides
detailed information on these characteristics. Figure 3A–D shows yeasts cultured on MA
plates, including strains stained with Sudan Black dye, along with microscopic images of
the yeasts. Candida krusei stands out as the only yeast species with documented evidence of
PHA production. Studies have shown that this yeast can produce the polymer PHB, with
accumulation levels ranging from 2.44% to 9.26% [150].
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3.2. PHA Production from Agricultural Waste via Solid-State Fermentation with Mixed
Microbial Cultures

To optimize SSF implementation, a comprehensive physico-chemical analysis was
undertaken to assess the fermentation suitability of three substrates. This analysis included
determination of MC, DM, VM, pH, RS concentration, and CFU (Tables 2 and 5). According
to the initial conditions (Table 2), the moisture content of the substrates ranged from 44% to
60%, reflecting the inherent characteristics of each material [151]. The literature indicates
that an MC range of 40–70% is generally optimal for bacterial and yeast growth [152].
Among the substrates, chickpea 2 exhibited the highest MC at 59.86%, while starch showed
the lowest at 44.77%. All substrates had high VM, between 97% and 99%. Initial pH values
of the substrates were within a range of 4.450 to 5.550, consistent with reported values in
the literature [153,154]. Chickpea 2 had the highest concentration of reducing sugars, at
56.78 mg/gDM.

Table 5. Physico-chemical and microbiological properties of used substrates at the end of experiment
(standard deviation was between ±0.012 and ±0.053).

Substrate w(MC)/% w(DM)/% w(VM)/% pH/- ω(RS)/mg
gDM−1 CFUbacteria/gDM CFUfungi/gDM w(C)/% w(N)/%

Chickpea 1 73.66 26.34 93.99 5.557 30.34 3.8 × 1010 2.4 × 108 52.21 1.73
Chickpea 2 74.99 25.01 91.90 5.219 12.36 4.7 × 1010 2.1 × 108 51.05 1.10

Starch 45.90 54.10 96.32 7.219 21.04 3.4 × 109 1.3 × 108 53.51 0.07

MC—moisture content; DM—dry matter; VM—volatile matter; RS—reducing sugars; CFU—colony forming unit.

At the end of the SSF process (Table 5), it was observed that the moisture content
(MC) increased in both chickpea 1 and chickpea 2. The changes in volatile matter were
minimal across all three substrates (3–6%), suggesting that while some components of the
substrate were metabolized, the overall matrix remained intact. In contrast, a significant
reduction in the concentrations of RS was observed in chickpea 2 from the beginning to the
end of fermentation (Tables 2 and 5). This decline suggests that microorganisms actively
utilized the available RS during fermentation, resulting in their depletion. This observation
aligns with findings reported in the literature, which highlight the metabolic activity of
microorganisms in converting available sugars into fermentation by-products. [155,156].
The observed differences in the changes in RS and volatile matter (VM) can be explained
by the distinct metabolic pathways employed by the microorganisms. RS, being readily
available, is preferentially consumed by microorganisms for energy and growth, leading
to its reduction. In contrast, volatile matter consists of more complex organic compounds,
such as cellulose, lignin, and hemicellulose, which are not immediately available for micro-
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bial utilization. The complex hierarchical structure of cellulose, consisting of crystalline
nanofibrils intertwined with lignin and hemicellulose, presents a barrier to microbial and
enzymatic degradation, making the breakdown of cellulose into fermentable sugars chal-
lenging [157,158]. This intricate structure highlights the difficulty in developing universal
pretreatment strategies for efficient biomass conversion. By implementing effective pre-
treatment strategies, such as dilute acid pretreatment, it is possible to optimize the substrate
composition and enhance the bioavailability of carbon sources, thereby maximizing the
potential for microbial growth and biopolymer production [158].

The change in CFU during SSF is significantly influenced by the physico-chemical
characteristics of solid substrates and its interaction with nutrients and water [153]. The
initial values of CFU for bacteria (Table 4) in all substrates were very high. A similar trend
can be seen for fungi, although the CFU values were lower. After 7 days of experiment
(Table 5), an increase in CFU values of bacteria and fungi was noticed on NA and MA,
respectively. This proliferation reflects the microorganisms’ adaptation to the solid sub-
strates and their effective utilization of available nutrients. Notably, the most significant
increase in CFU value was observed with chickpea 2, where the CFU on NA increased from
1.2 × 109 to 4.7 × 1010 cell/gDM.

The final step of SSF involved drying the substrates to determine the dry cell weight
(DCW) and extracting the PHA. This extraction used a biphasic system, where chloroform,
the lower phase, was used to isolate the PHA [159]. This method relies on the fact that PHA
is soluble in organic solvents like chloroform, which allows for the efficient separation of
the polymer from the biomass. The results of the PHA extraction from various substrates,
summarized in Table 6, indicated relatively low percentages of PHA accumulation overall.
However, chickpea 2, which exhibited the highest CFU value (Table 5), demonstrated a
notably higher accumulation percentage of 13.81%. In contrast to chickpea 1 and starch,
which yielded a greater diversity of microbial cultures, only two distinct microbial cultures
were isolated from chickpea 2. The observed limited microbial diversity in cultures isolated
from chickpea 2 may have reduced competition among microorganisms, thereby enhancing
their metabolic efficiency and promoting greater accumulation of PHAs. This observation
is consistent with studies [160–162] showing that lower microbial diversity can improve
metabolic output by reducing interspecies competition for resources. With fewer species
present, microorganisms can more effectively utilize available carbon sources for PHA
production. Additionally, the concentration of microbial cultures can influence biopolymer
accumulation, as reduced competition allows for optimized resource utilization and en-
hanced microbial growth. In a previous study, Plasticicumulans was enriched with 27.6%
and 50.6% as the most abundant populations, under high and low feast dissolved oxygen
(DO) conditions, respectively. When both cultures were fed with a synthetic mixture of the
four volatile fatty acids for PHA accumulation, butyrate and valerate were always taken
up first, followed by acetate and propionate, regardless of the DO levels applied. It seemed
that the abundance of Plasticicumulans in an enriched mixed microbial culture for PHA
accumulation had a direct impact on substrate competition, with a clear preference for
butyrate and valerate over acetate and propionate [162]. It is noteworthy that chickpea
2 contained a strain of Micrococcus, which previous studies have associated with the pro-
duction of scl-PHAs [147]. This suggests that the presence of Micrococcus in chickpea 2
may have played a pivotal role in the biosynthesis of PHAs, thereby contributing to the
higher accumulation observed in this substrate (Table 6). The implications of microbial
diversity and strain-specific capabilities underscore the importance of substrate selection in
optimizing PHA production during fermentation processes. This finding underscores the
suitability of chickpea 2 as a substrate for microbial growth and PHA production, highlight-
ing its potential for optimizing biopolymer yields. The correlation between CFU values
and PHA accumulation can be attributed to several factors. First, the robust microbial
population indicated by the CFU values suggests that chickpea 2 provided an optimal
environment for microbial proliferation, which in turn facilitated higher PHA biosynthesis.
Furthermore, the nutritional composition of chickpea 2 may have favored the metabolic
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pathways leading to PHA production, thereby enhancing the accumulation of this biopoly-
mer [163]. Overall, the results emphasize the importance of substrate selection in SSF
processes for PHA production, as the characteristics of the substrate directly influence both
microbial growth and the efficiency of PHA accumulation [160,164]. Moreover, the choice
of substrate can reduce or intensify competition among microbial communities, further
influencing the efficiency of PHA synthesis [164]. Future investigations could focus on re-
fining the extraction techniques and optimizing fermentation conditions to further improve
PHA yields from different substrates. Additionally, incorporating preprocessing steps for
agricultural waste prior to fermentation may enhance the accessibility of carbon sources
for microorganisms. This could involve methods such as physical treatment (e.g., grinding
or milling), chemical treatment (e.g., acid or alkali hydrolysis), or biological pretreatment
(e.g., enzymatic degradation) [165]. By breaking down complex molecules into simpler
sugars and increasing the surface area of the substrates, preprocessing could facilitate more
efficient microbial metabolism and higher PHA production rates. Such approaches not only
optimize the fermentation process but also contribute to the overall sustainability of using
agricultural waste for biopolymer synthesis.

Table 6. Percentages of PHA accumulation in mixed microbial cultures using agricultural wastes.

Substrate PHA Accumulation/%

Chickpea 1 5.42 ± 0.062
Chickpea 2 13.81 ± 0.048

Starch 5.29 ± 0.086

3.3. Characterization of Extracted PHA
3.3.1. FTIR-ATR Spectroscopy Analysis of the Extract

In FTIR spectroscopy, several characteristic functional groups and their corresponding
absorption peaks are associated with PHAs. These groups are crucial for confirming
the presence and structure of PHAs in a sample. All infrared (IR) spectra (Figure 4)
exhibit a broad peak between 3281 and 3303 cm−1, indicating the presence of hydroxyl
groups (–OH) and potentially water, which complicates the definitive identification of
PHAs [166]. In Figure 5A, the IR spectrum for chickpea 1 shows absorption peaks at
2918 and 2850 cm−1, corresponding to asymmetric and symmetric stretching of methyl
(–CH3) and methylene (–CH2) groups. The peak at 1708 cm−1 signifies C=O stretching
associated with carbonyl bonds, while peaks at 1264, 1371, and 1456 cm−1 represent
bending vibrations of methyl and methylene bonds. Additionally, absorption peaks at 1019
and 873 cm−1 indicate the presence of C–C bonds. Figure 5B presents the IR spectrum
for chickpea 2, which closely resembles that of chickpea 1, with notable variations in
the methyl and methylene stretching peaks at 2919 and 2850 cm−1, as well as C–C bond
stretching peaks at 1006 and 872 cm−1. The IR spectrum for starch (Figure 5) also reveals
characteristic peaks associated with PHA structure. Peaks at 2950 and 2920 cm−1 indicate
asymmetric stretching of methyl and methylene groups, while smaller peaks at 1713 and
1246 cm−1 confirm carbonyl bond stretching and bending of methyl and methylene bonds,
respectively [167]. Overall, the IR spectral analysis reinforces the identification of PHB in the
substrates, emphasizing the molecular characteristics common to PHA structures. Further
investigation may be necessary to clarify the presence of water and other components that
could affect PHA quantification.
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3.3.2. DSC Analysis of the Extract

The DSC thermograms of extracted samples derived from chickpea 1 and starch exhibit
a broad endothermic peak during the first heating cycle, indicative of water evaporation
from the structural matrix of the samples. This peak is absent in the thermogram of the
extracted samples obtained from chickpea 2. All thermograms display irregular profiles
characterized by numerous sharp peaks, which provide critical information regarding the
glass transition temperature (Tg), melting temperature (Tm), crystallization temperature
(Tc), and the enthalpies of melting and crystallization (∆Hm and ∆Hc, respectively). Such
thermal data are essential for the characterization and identification of the synthesized
PHA. The detailed results of the DSC analysis are summarized in Table 7.

Table 7. DSC analysis results for PHA obtained from used substrates after 7 days of SSF.

Sample Tg/◦C Tm/◦C ∆Hm/J g−1 Tc/◦C ∆Hc/J g−1

Chickpea 1 / 128.16 ± 0.007 −8.46 ± 0.002 99.10 ± 0.001 16.20 ± 0.009
Chickpea 2 1.81 ± 0.007 124.52 ± 0.010 −6.28 ± 0.017 95.24 ± 0.001 11.33 ± 0.007

Starch / 119.53 ± 0.007 −0.46 ± 0.021 85.37 ± 0.006 1.96 ± 0.010
Tg—glass transition temperature; Tm—melting temperature; ∆Hm—melting enthalpy; Tc—crystallization temper-
ature; ∆Hc—crystallization enthalpy.

The cooling cycle thermograms reveal a prominent exothermic peak, indicating the
crystallization of PHA. This peak is distinctly observed in the thermograms (Figure 5A,B) for
PHA samples derived from both chickpea 1 and chickpea 2, with crystallization temperatures
recorded at 99.10 ◦C and 95.24 ◦C, respectively. These findings align with the published
literature [168], which reports similar crystallization temperatures for polyhydroxybutyrate-
co-valerate (PHBV), exhibiting a crystallization temperature of approximately 70 ◦C for
copolymers containing 3, 8, and 10 mol% of hydroxyvalerate (HV). In contrast, copolymers
with higher HV content, specifically 17% and 30%, demonstrated lower crystallization tem-
peratures of 60 ◦C and 40 ◦C, respectively. These comparisons underscore the thermodynamic
behavior of PHAs and highlight the influence of compositional variations on their crystalliza-
tion properties. The observed crystallization temperatures in the current study suggest that the
molecular arrangement and interaction of the components in the PHA samples significantly
affect their thermal properties. The melting curve, specifically the second heating cycle curve
of PHA obtained from chickpea 2 (Figure 5B), reveals a glass transition temperature of 1.81 ◦C.
Further analysis of the melting curve demonstrates the presence of distinct endothermic peaks,
with melting temperatures of 128.16 ◦C, 124.52 ◦C, and 119.53 ◦C corresponding to the PHAs
extracted from chickpea 1, chickpea 2, and starch, respectively. These melting temperatures
align closely with those reported by Dias et al. [169], which indicate melting point 133 ◦C
PHBV containing 25 mol% of hydroxyvalerate (HV), as well as for the copolymer P(3HB-co-6
mol% 3HA). The variations in melting temperature suggest that the composition of the sub-
strates influences the thermal properties of the resulting PHA. The higher crystallization and
melting temperatures observed in this study may be indicative of a more crystalline structure,
which could contribute to improved mechanical properties and thermal stability of the pro-
duced biopolymers. This ordered structure may also reflect the specific microbial metabolic
pathways utilized during PHA production, which can affect the copolymer composition and
consequently its thermal characteristics. Additionally, the crystallization behavior of PHAs is
crucial for their processing and application in biodegradable materials. Understanding these
thermal properties helps in optimizing the production and processing conditions to enhance
the performance of PHAs in various applications, including packaging, agricultural films, and
other environmentally friendly products. Further investigation into the relationship between
the composition of the substrate and the resulting thermal properties of PHA could provide
insights for optimizing biopolymer production from agricultural waste.
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3.3.3. TGA of the Extract

The TGA curves (Figure 6) obtained after seven days of SSF indicate a single-stage ther-
mal degradation process for PHA, consistent with findings by Apiwatanapiwat et al. [129]
and Akbari et al. [170]. This single-stage degradation suggests a uniform thermal behavior
of the obtained PHA in this study, which may be attributed to the specific microbial activity
and substrate conditions during fermentation. In contrast, Dikshit et al. [171] reported a
two-stage thermal degradation profile for PHB synthesized using Cupriavidus necator and
Bacillus megaterium, with degradation temperatures ranging from 100 ◦C to 160 ◦C. They
attributed this phenomenon to the selective evaporation of adsorbed solvents, such as chlo-
roform, which may influence the thermal properties of the synthesized PHB. The presence
of these solvents can lead to variations in the degradation mechanisms, highlighting the
importance of synthesis conditions on the thermal stability of biopolymers. The highest
mass loss, recorded at 71.64%, was observed in the PHA sample derived from chickpea 1.
This significant mass loss may reflect the degradation of less thermally stable components
or impurities within the sample. The maximum degradation temperatures (Td,max) for
the PHAs obtained in this study were found to be 302.75 ◦C, 309.06 ◦C, and 293.37 ◦C for
samples from chickpea 1, chickpea 2, and starch, respectively. These temperatures align
with those reported by Dikshit et al. [170], reinforcing the expected degradation profile
for PHB. Notably, the Td,max values observed in this study are higher than those reported
for commercial PHB, which exhibit degradation temperatures of 415 ◦C and 289 ◦C. This
indicates that the PHB synthesized in this research is thermally more resistant than the
commercially available variants. The enhanced thermal stability of the produced PHB may
be advantageous for applications requiring materials that can withstand higher tempera-
tures without degradation, further emphasizing the potential of utilizing agricultural waste
as a substrate for biopolymer production.
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4. Conclusions

This study explores the potential of utilizing agro-industrial waste, specifically starch
and chickpea byproducts, as substrates for PHA production. A total of eight bacterial and
four yeast strains capable of PHA biosynthesis were successfully isolated from these waste
materials. Comprehensive characterization of the substrates, both before and after SSF,
provided critical data on moisture content, dry matter, volatile matter, nitrogen and carbon
content, and reducing sugar levels. The SSF process, conducted over seven days, achieved
a maximum PHA accumulation of 13.81% from the chickpea 2 substrate. Structural and
thermal analyses using FTIR-ATR, TGA, and DSC indicated the synthesis of PHB. While the
results demonstrate the feasibility of PHA production from agro-industrial waste, further
research is required to enhance yield, particularly through substrate pretreatment, optimiza-
tion of fermentation conditions, and exploration of alternative substrates. Additionally,
more detailed structural characterization will facilitate the development of bioplastics with
tailored properties. This study contributes to advancing sustainable PHA production,
supporting both environmental sustainability and the principles of the circular economy.
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